Optimal error estimates of a Crank–Nicolson finite element projection method for magnetohydrodynamic equations

نویسندگان

چکیده

In this paper, we propose and analyze a fully discrete finite element projection method for the magnetohydrodynamic (MHD) equations. A modified Crank–Nicolson Galerkin are used to discretize model in time space, respectively, appropriate semi-implicit treatments applied fluid convection term two coupling terms. These approximations result linear system with variable coefficients which unique solvability can be proved theoretically. addition, use second-order decoupling of Van Kan type [Van Kan, SIAM J. Sci. Statist. Comput. 7 (1986) 870–891] Stokes solver, computes intermediate velocity field based on gradient pressure from previous level, enforces incompressibility constraint via Helmholtz decomposition field. The energy stability scheme is theoretically proved, decoupled solver needs analyzed details. Error estimates L ∞ (0, T ; 2 ) norm proposed scheme. Numerical examples provided illustrate theoretical results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A stabilized finite element method for the incompressible magnetohydrodynamic equations

We propose and analyze a stabilized nite element method for the incompressible magnetohydrodynamic equations. The numerical results that we present show a good behavior of our approximation in experiments which are relevant from an industrial viewpoint. We explain in particular in the proof of our convergence theorem why it may be interesting to stabilize the magnetic equation as soon as the hy...

متن کامل

Error Estimates for a Semidiscrete Finite Element Method for Fractional Order Parabolic Equations

We consider the initial boundary value problem for the homogeneous time-fractional diffusion equation ∂ t u − ∆u = 0 (0 < α < 1) with initial condition u(x, 0) = v(x) and a homogeneous Dirichlet boundary condition in a bounded polygonal domain Ω. We shall study two semidiscrete approximation schemes, i.e., Galerkin FEM and lumped mass Galerkin FEM, by using piecewise linear functions. We establ...

متن کامل

Error Estimates for a Finite Element Method for the Drift-diffusion Semiconductor Device Equations

In this paper, optimal error estimates are obtained for a method for numerically solving the so-called unipolar model (a one-dimensional simpliied version of the drift-diiusion semiconductor device equations). The numerical method combines a mixed nite element method using a continuous piecewise-linear approximation of the electric eld with an explicit upwinding nite element method using a piec...

متن کامل

Some Optimal Error Estimates for Piecewise Linear Finite Element Approximations

It is shown that the Ritz projection onto spaces of piecewise linear finite elements is bounded in the Sobolev space, Wp\ for 2 <p < oo. This implies that for functions in W¿ n Wp the error in approximation behaves like 0(h) in Wx, for 2 <p =c oo, and like 0(h2) in Lp, for 2 *íp < oo. In all these cases the additional logarithmic factor previously included in error estimates for linear finite e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ESAIM

سال: 2022

ISSN: ['1270-900X']

DOI: https://doi.org/10.1051/m2an/2022020